Temporal regulation of nuclear factor one occupancy by calcineurin/NFAT governs a voltage-sensitive developmental switch in late maturing neurons.

نویسندگان

  • Baojin Ding
  • Wei Wang
  • Tharakeswari Selvakumar
  • Hualin Simon Xi
  • Hong Zhu
  • Chi-Wing Chow
  • Jay D Horton
  • Richard M Gronostajski
  • Daniel L Kilpatrick
چکیده

Dendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs. Chromatin immunoprecipitation analysis revealed that a central feature of this program was temporally regulated NFI occupancy of late-expressed gene promoters. Developing CGNs undergo a hyperpolarizing shift in membrane potential, and depolarization inhibits their dendritic and synaptic maturation via activation of calcineurin (CaN) (Okazawa et al., 2009). Maintaining immature CGNs in a depolarized state blocked NFI temporal occupancy of late-expressed genes and the NFI switch program via activation of the CaN/nuclear factor of activated T-cells, cytoplasmic (NFATc) pathway and promotion of late-gene occupancy by NFATc4, and these mechanisms inhibited dendritogenesis. Conversely, inhibition of the CaN/NFATc pathway in CGNs maturing under physiological nondepolarizing conditions upregulated the NFI switch program, NFI temporal occupancy, and dendrite formation. NFATc4 occupied the promoters of late-expressed NFI program genes in immature mouse cerebellum, and its binding was temporally downregulated with development. Further, NFI temporal binding and switch gene expression were upregulated in the developing cerebellum of Nfatc4 (-/-) mice. These findings define a novel NFI switch and temporal occupancy program that forms a critical link between membrane potential/CaN and dendritic maturation in CGNs. CaN inhibits the program and NFI occupancy in immature CGNs by promoting NFATc4 binding to late-expressed genes. As maturing CGNs become more hyperpolarized, NFATc4 binding declines leading to onset of NFI temporal binding and the NFI switch program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal autoregulation by NFI occupancy and ETV1 promotes the developmental expression of dendrite-synapse genes in cerebellar granule neurons

Nuclear Factor One (NFI) transcription factors regulate temporal gene expression required for dendritogenesis and synaptogenesis via delayed occupancy of target promoters in developing cerebellar granule neurons (CGNs). Mechanisms that promote NFI temporal occupancy have not been previously defined. We show here that the transcription factor ETV1 directly binds to and is required for expression...

متن کامل

Temporal control of a dendritogenesis-linked gene via REST-dependent regulation of nuclear factor I occupancy

Developing neurons undergo a series of maturational stages, and the timing of these events is critical for formation of synaptic circuitry. Here we addressed temporal regulation of the Gabra6 gene, which is expressed in a delayed manner during dendritogenesis in maturing cerebellar granule neurons (CGNs). Developmental up-regulation of Gabra6 transcription required a binding site for nuclear fa...

متن کامل

Developmental regulation of the mouse IGF-I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle.

Skeletal muscle development and growth are regulated through multiple signaling pathways that include insulin-like growth factor I (IGF-I) and calcineurin activation of nuclear factor of activated T cell (NFAT) transcription factors. The developmental regulation and molecular mechanisms that control IGF-I gene expression in murine embryos and in differentiating C2C12 skeletal myocytes were exam...

متن کامل

The regulaton and function of nuclear factor of activated T-cells in neurons

Ca-dependent transcription is a fundamental process by which neurons translate activation experience into cellular level adaptations. The nuclear factor of activated T-cells (NFAT) family of proteins comprise four Ca/calcineurin (CaN)-dependent transcription factors that are widely expressed throughout virtually all tissues. Within neurons, NFATdependent signaling is critical for axonal develop...

متن کامل

Deafferentation-induced activation of NFAT (nuclear factor of activated T-cells) in cochlear nucleus neurons during a developmental critical period: a role for NFATc4-dependent apoptosis in the CNS.

During the development and maturation of sensory neurons, afferent activity is required for normal maintenance. There exists a developmental window of time when auditory neurons, including neurons of the anteroventral cochlear nucleus (AVCN), depend on afferent input for survival. This period of time is often referred to as a critical period. The cellular and molecular mechanisms that underlie ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 7  شماره 

صفحات  -

تاریخ انتشار 2013